Tetrahedron Letters, Vol.27, No.17, pp 1933-1934, 1986 0040-4039/8 Printed in Great Britain ©1986 Perga

0040-4039/86 \$3.00 + .00 ©1986 Pergamon Press Ltd.

ADDITION OF ORGANOMAGNESIUM REAGENTS TO CYANOHYDRIN-O-SILYL ETHERS: AN EFFICIENT AND FLEXIBLE SYNTHESIS OF UNSYMMETRICALLY SUBSTITUTED ACYLOINS Melvyn Gill*, Milton J. Kiefel and Deborah A. Lally Department of Organic Chemistry, University of Melbourne, Parkville, Victoria, 3052, Australia.

<u>Abstract</u>: Acyloins are prepared in high yields <u>via</u> reaction between Grignard reagents and <u>O</u>-trimethylsilyl ethers of aldehyde cyanohydrins: the method is particularly useful for the preparation of discrete acyloins in which the substituents are unsymmetrically disposed about the α -hydroxyketone moiety.

Acyloins (α -hydroxyketones) are valuable starting materials for the preparation of a wide variety of heterocycles¹ and carbocyclic compounds.² As part of a synthetic project we required several acyloins of the type $\underline{1}$ in which R^1 and R^2 were different aryl residues and in which the relative position of the substituents about the α -hydroxyketone moiety was unequivocally defined.

Among the most efficient general routes to α -hydroxyketones are the classical acyloin condensation of esters^{3,4} and the biomimetic thiazolium salt catalysed coupling of aldehydes.⁵ Unfortunately, both of these processes are severely limited in their application to the synthesis of unsymmetrically substituted acyloins by cross-coupling reactions and consequent lack of regiocontrol.⁶

We report here a chemically efficient and versatile route to acyloins which proves particularly useful for the synthesis of compounds of the type 1 $(R^1 \neq R^2)$.

The success of the method relies on the fact that reaction of cyanohydrin-O-TMS ethers of the type $\underline{2}$ (1 eq) with Grignard reagents ($\underline{3}$) (1.5 eq) in ether at reflux affords the intermediates ($\underline{4}$) which do not suffer attack by the organometallic reagent.⁷ Furthermore, subsequent hydrolysis of $\underline{4}$ (2M HCl, r.t., 16h) is not accompanied by any equilibration, e.g., $\underline{1a} \approx \underline{1b}$, ⁸ and after chromatography the acyloins are obtained in high yields. The method has proven effective for the synthesis of a range of unsymmetrical acyloins (Table).⁸

Our results extend the synthetic utility of cyanohydrin-Q-silyl ethers,

which have been employed to date almost exclusively in a nucleophilic capacity.⁹ Their effective role as electrophiles has been limited hitherto to reductive¹⁰ and hydrolytic¹¹ transformations (see also ref. 7).

The acyloin synthesis described herein is superior in efficiency and flexibility to methods based on acyl carbanion chemistry,¹² particularly in those cases where the aldehyde component or the acyloin itself is unduly sensitive.¹³

Entry	Cyanohydrin Derivative ^a R ¹ in <u>2</u>	Grignard Reagent	Acyloin 1		Yield (%) ^b
			\mathbf{R}^{1}	- R ²	
a	Ph	4-MeO-C ₆ H ₄ CH ₂ MgC1	Ph	4-MeO-C ₆ H ₄	79
ъ	4-MeO-C ₆ H ₄	PhCH2MgC1	4-MeO-C ₆ H ₄	Ph	77
с	3,4-(MeO) ₂ -C ₆ H ₃	PhCH ₂ MgC1	3,4-(MeO) ₂ -C ₆ H ₃	Ph	79
d	$3,4-(MeO)_2-C_6H_3$	$4 - MeO - C_6 H_4 CH_2 MgC1$	$3, 4 - (MeO)_2 - C_6 H_3$	4 -MeO-C ₆ H ₄	78
e	Ph	CH3CH2MgBr	Ph	сн3	85
f	CH ₃ CH ₂	PhCH2MgC1	CH ₃ CH ₂	Ph	78
g	4-MeO-C ₆ H ₄	n-C ₄ H ₉ MgBr	4~MeO-C ₆ H ₄	n-C ₃ H ₇	79
h	n-C ₃ H ₇	4-MeO-C ₆ H ₄ CH ₂ MgCl	n-C3H7	4-MeO-C ₆ H ₄	78
i	Ph	CH ₃ Mg I	Ph	н	83
_j	Н	PhCH ₂ MgC1	H	Ph	79

a) Prepared in near quantitative yield from the corresponding aldehyde and cyanotrimethylailane.
 b) Refers to yield of isolated, chromatographically and spectroscopically homogeneous material.

Our application of the acyloins <u>la</u> - <u>ld</u> to the synthesis of several fungal metabolites is proceeding and will be reported in the full paper. <u>Acknowledgements</u>: M.J.K. and D.A.L. are the recipients of Commonwealth Postgraduate Awards. The Australian Research Grants Scheme provided financial support. References and Footnotes

- For examples see: R. Lakham and B. Ternai in 'Advances in Heterocyclic Chemistry' <u>17</u>, 99 (1974), and M.R. Grimmett, <u>ibid</u> <u>12</u>, 103 (1970).
- 2. C. Egli, S.E. Helali and E. Hardegger, Helv. Chim. Acta 58, 104 (1975).
- 3. J.J. Bloomfield, D.C. Owsley and J.M. Nelke, 'Org. Reacts.' 23, 259 (1976).
- 4. Acyloin condensation of ethyl phenylacetate in the presence of TMSCl gives only 47% of the acyloin 1 ($R^1=R^2=Ph$): K. Rühlmann, Synthesis 1971, 236.
- 5. H. Stetter, R. Rämsch and H. Kuhlmann, Synthesis 1976, 733.
- 6. Thiazolium salt catalysis shows selectivity in a few specialised cross-coupling reactions: H. Stetter and G. Dämbkes, <u>Synthesis</u> <u>1977</u>, 403;
 T. Matsumoto, M. Ohishi and S. Inoue, <u>J. Org. Chem.</u> <u>50</u>, 603 (1985).
- 7. Compare: R. Amouroux and G.P. Axiotis, Synthesis 1981, 270.
- 8. The diaryl and aryl-alkyl acetoins are distinguished by differences in the respective ${}^{13}C$ and ${}^{1}H$ n.m.r. spectra.
- 9. J.D. Albright, Tetrahedron 39, 3207 (1983).
- 10. D.A. Evans, G.I. Carroll and L.K. Truesdale, J. Org. Chem. 39, 914 (1974).
- 11. E.J. Corey, D.N. Crouse and J.E. Anderson, <u>J. Org. Chem.</u> <u>40</u>, 2140 (1975).
- 12. See ref. 9 and also L. Colombo, C. Gennari, C. Scolastico and M.G. Bartella, J. Chem. Soc. Perkin Trans. I 1978, 1036.
- Bartella, J. Chem. Soc. Perkin Trans. I <u>1978</u>, 1036.
 13. Attempts to prepare the acyloin <u>1</u> (R¹=R²=Ph) in good yield using a dithiane approach have not been successful: G. Pattenden, personal communication.

(Received in UK 3 March 1986)